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The force exerted by a fireball was deduced both from the change of the equilibrium position of a

pendulum and from the change in the pendulum oscillation period. That measured force was found

to be several times larger than the force exerted by the ions accelerated across the double layer that

is assumed to surround the fireball. The force enhancement that is expected by ion-neutral

collisions in the fireball is evaluated to be too small to explain the measured enhanced force. Gas

pressure increase, due to gas heating through electron-neutral collisions, as recently suggested

[Stenzel et al., J. Appl. Phys. 109, 113305 (2011)], is examined as the source for the force

enhancement. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863958]

I. INTRODUCTION

A fireball (a plasma of a ball shape) is often generated

near a positively biased electrode in a (usually) low pressure

gas.1–18 The generation of the fireball is believed to be asso-

ciated with an excitation of a double layer around the fire-

ball, across which part of the discharge voltage drops and in

which electrons acquire the energy for ionizing the gas.1 One

would expect the momentum of the particle flow outward of

the ball to equal the momentum that the ions acquire while

they are accelerated in the double layer. However, recent

measurements15,18 show that the force exerted by the plasma

flow is much larger than the force by the impinging ions. We

suggested that the enhancement of the force could result

from ion-neutral collisions in the fireball,15 similarly to what

we have shown theoretically to occur in cylindrical plasma

that expands axially,19 and demonstrated experimentally in a

magnetized plasma.20–22 Stenzel et al. have recently sug-

gested that it is neutral-gas heating that is the source of the

enhanced force in their fireball experiment.18 We present

here measurements of the force exerted by the fireball, and

we analyze in detail these suggested mechanisms for force

enhancement: ion-neutral collisions and gas heating.

In Sec. II, we describe the experimental setup. In

Sec. III, we describe the measurements of the force induced

by the fireball. We show that the force over the ion flux is

several times larger than what is expected according to the

maximum momentum that an ion can acquire from the volt-

age drop. In Sec. IV, we evaluate the enhancement of the

force by ion-neutral collisions in the fireball. We calculate

the enhancement first when the neutral density is high so that

the ion-neutral collision frequency is independent of the ion

velocity and second when the collision frequency depends

linearly on the ion velocity.23,24 The enhancement is propor-

tional to the number of collision mean free paths in the first

case and to the square root of that number in the second

case.21 The enhancement calculated both ways is too small

for explaining the measured force. In Sec. V, we estimate the

force by the increased gas pressure by gas heating due to

electron-neutral collisions, as suggested in Ref. 18. We

employ a model in which the neutral gas is accelerated by

the local gas-pressure increase. The rate of gas heating that

results in an increase of the gas pressure seems to reasonably

explain the measured force as suggested in Ref. 18, if there

is a large neutral-gas flow outward of the fireball.

II. EXPERIMENTAL SETUP

A fireball is generated when a DC voltage is applied

between an anode and an electron-emitting cathode, both

immersed in a low (several mTorr) pressure gas. The anode

and cathode in our case were part of our Radial Plasma

Source (RPS).20,21 The RPS was located at the center of a

cross ISO 320 vacuum chamber which was pumped to a base

pressure of 0.01 mTorr by a two-stage pump station.

The RPS, shown in Fig. 1, consisted of a ceramic insula-

tor, a molybdenum anode, a magnetic-field generating sole-

noid (not used here), an iron core, a gas distributor, and a

cathode. The ceramic insulator was composed of two annular

disks connected with an axial segment. The outer diameter

of each of the annular disks was 77 mm, the inner diameter

was 30 mm, and the axial distance between the two disks

was 5 mm. The RPS axial dimension was 30 mm. The mo-

lybdenum cylindrical anode was of 48 mm in diameter,

4.5 mm in height, and 0.25 mm in thickness. As is seen in the

figure, the ceramic unit, the solenoid, and the iron core have

the same axis of symmetry. The empty cylindrical volume

between those three parts plays a role of a gas distributor,

through which the working gas was supplied through six

holes in the ceramic insulator into the space between the two

FIG. 1. The RPS, the pendulum, and the Langmuir probe.
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annular disks. The gas used was argon with a flow rate in all

the experiments of 35 SCCM (Standard Cubic Centimeter

per Minute) and, consequently, the pressure near the wall of

the vacuum chamber was 5 mTorr. For the plasma genera-

tion, we employed a cathode located 80 mm from the axis of

the RPS. The electron emission was achieved by heating a

tungsten five-turn loop of 6 mm in diameter and 15 mm in

height by a DC current of 19 A. An argon gas of 4 SCCM

flow rate flows through the cathode. The cathode design and

operation were described previously.20

The measurement system consisted of a flat Langmuir

probe and a pendulum. The flat Langmuir probe was

employed for measuring the ion particle flux flowing from

the RPS, while the pendulum was used for evaluation of the

force exerted by the ion and neutral flow out of the source.

Both Langmuir probe and pendulum were located in the vi-

cinity of the fireball.

III. THE ION PARTICLE FLUX AND FORCE EXERTED
BY THE FLOW

When the discharge was ignited in an unmagnetized

mode at about 5 mTorr, a fireball appeared, as shown in

Fig. 2. The size of the ball grew with the discharge current.

The discharge current was ID¼ 0.6 A in Fig. 2(a), 1.3 A in

Fig. 2(b), and 1.4 A in Fig. 2(c), and the ball diameter varied

from about 24 mm in Fig. 2(a) to about 34 mm in Fig. 2(c).

The ball was located for the lower currents as shown in

Figs. 2(a) and 2(b), and when the current was increased to

above 1.3 A, the ball jumped to the location shown in Fig. 2(c).

We will discuss in this paper mostly measurements taken while

the ball was in the position shown in Fig. 2(c).

A flat Langmuir probe was positioned in front of the

fireball shown in Fig. 2(c), at a distance 8 cm from the RPS

axis. The ion saturation current from the side of the probe

facing the fireball was deduced from measurements as

described in Ref. 20. This current was found to be

Iprobe,i¼ 1.7 mA when the ball was in the position in

Fig. 2(c). The area of the Langmuir probe was Aprobe¼ 337 mm2

and the distance between the Langmuir probe and the ball

surface was about 5 mm. The Langmuir probe has been cho-

sen to be of dimensions comparable to those of the pendulum

sensing plate, so that the ion current collected by the probe

be similar to the ion current impinging on the pendulum

plate. We assume that ions flow radially outward of the fire-

ball at about the same flux density all over the ball surface.

Employing the ratio of a sphere area of a radius that is the

distance of the probe from the ball center (6082 mm2) and

the Langmuir probe area (337 mm2), we estimate the total

ion current out of the fireball to be Ii¼ 31 mA.

The ratio of the electron current Ie (which equals

approximately the discharge current, ID¼ 1.4 A) to the total

ion current is Ie/Ii¼ 46. This ratio is smaller than
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
¼

271 (where me and mi are the electron and argon ion masses),

as it should be according to the Bohm relation for a double

layer.1,25 However, as was also noted by Stenzel et al.,17

electrons probably cross the double layer at the ball bound-

ary in both directions. The momentum balance across such a

layer is then satisfied for a smaller net electron current. The

Bohm ratio is not expected to be a valid constraint on the ion

current in the fireball.

Employing a pendulum as described in Ref. 20, we

deduced the force exerted by the mixed ion-neutral flow out

of the fireball. The pendulum and a ruler for measuring the

pendulum position are also shown in Fig. 1. We denote by x
the deviation of the pendulum from its equilibrium position

under gravity only, denoted as x¼ 0 (small angle is

assumed). In one method, we evaluated the force by meas-

uring the deviation of the pendulum equilibrium position.

The deviation of the pendulum equilibrium position was

measured for two cases. In one case, there was no discharge

and the pendulum moved under the force exerted by the

neutral-gas flow out of the RPS (and under gravity). The

deviation of the pendulum position was xg¼ 6 6 1 mm in

this case. In a second case, the discharge was on, and

the pendulum moved under both the force exerted by the

neutral-gas flow out of the RPS and the force exerted by

the mixed ion-neutral flow out of the fireball (and under

gravity). The deviation of the pendulum position was

xp¼ 15 6 1.5 mm in this case, which is shown in Fig. 2(c).

Therefore, the force on the pendulum at the equilibrium posi-

tion in the first case, Fg, and the force on the pendulum at

the equilibrium position in the second case, Fp, were

Fg;p ¼ Mgxg;pd=l2, where M is the pendulum mass, g is the

free-fall acceleration, l and d are the distances from the pen-

dulum axis to the center of the sensing plate and to the pen-

dulum center of mass, respectively. These forces were found

to be Fg¼ 19 6 3.5 lN and Fp¼ 46 6 5 lN.

Since when the discharge was off, the gas flow out of the

RPS was approximately azimuthally symmetric with respect

to the RPS axis of symmetry, we assume that the dependence

FIG. 2. The fireball near the RPS. (a) and (b) The fireball for a discharge

current of 0.6 A, and 1.3 A, respectively. (c) The fireball after moving to a

different location for a discharge current of 1.4 A.
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on x of the force that the gas flow exerts on the pendulum is of

the form: Fg Rþ xgð Þ= Rþ xð Þ, inversely proportional to the

distance from the RPS axis, Rþ x. Here, R¼ 75 mm is the dis-

tance between the RPS axis of symmetry and the position

x¼ 0. When the discharge was on, a mixed plasma-neutral

flow, assumed spherically symmetric with respect to the fire-

ball center, exerted on the pendulum a force of the form:

Ff b aþ xpð Þ= aþ xð Þ
� �2

. This force by the mixed plasma-

neutral flow is inversely proportional to the square of the dis-

tance from the center of the fireball, aþ x, where a¼ 17 mm

is the radius of the fireball. We positioned the pendulum so

that its equilibrium position under gravity only (x¼ 0) is near

the outer edge of the fireball. The force by the gas flow out of

the RPS is assumed not to be modified when the discharge

was on. Thus, when the discharge was on, the total force by

the flow out of the RPS and the flow out of the fireball was the

sum of these two forces. This total force at x¼ xp is

Fg Rþ xgð Þ= Rþ xpð Þ þ Ff b and is equal to the measured

force, Fp, so that Ff b ¼ Fp � Fg Rþ xgð Þ= Rþ xpð Þ. We can

therefore express the total force at each x by the known pa-

rameters Fg, Fp, xg, and xp.

To gain confidence in our assumptions about the spatial

dependence of the force, we also used another method. In

that other method, we measured the period of oscillations of

the pendulum under the force by the flow and the gravita-

tional force, when the discharge is on. The oscillations are

shown in the movie in Fig. 3 (Multimedia view). The aver-

age period when the fireball was close (Fig. 2(c) and also the

movie in Fig. 3) was found from Fig. 4 to be

tp¼ 0.44 6 0.01 s. The period of oscillations in vacuum was

measured as tv¼ 0.56 6 0.01 s (not shown here).

The equation of motion of the pendulum is

I
d2x

dt2
þMgdx ¼ Fgl2

Rþ xg

Rþ x

� �

þ Fpl2 1� Fg

Fp

Rþ xg

Rþ xp

� �� �
aþ xp

aþ x

� �2

: (1)

The pendulum oscillates under three forces. The first and the

second terms on the right-hand side (RHS) of the equation

are contributions to the torques by the force by the gas flow

out the RPS and by the force by the mixed ion-neutral flow

out of the fireball, respectively, as described above. The sec-

ond term on the left hand side is the linear contribution of

gravity. The moment of inertia of the pendulum is I.
We now write the equation of motion as

d2x

ds2
þ 2pð Þ2x ¼ 2pð Þ2xg

Rþ xg

Rþ x

� �

þ 2pð Þ2xp 1� xg

xp

Rþ xg

Rþ xp

� �� �
aþ xp

aþ x

� �2

;

(2)

where s � 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mgd=I

p
t. When gravity is the only restoring

force of the pendulum, the period of oscillations is s¼ 1, and

tv ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=Mgd

p
Þ=2p. We integrate numerically Eq. (2) with

the initial conditions x(s¼ 0)¼ 3 mm and dx/ds(s¼ 0)¼ 0,

and find that the turning point is x¼ 29 mm at s¼ 0.375.

Therefore, we expect the period of oscillations in the pres-

ence of the mixed plasma-gas flow to be tp ¼ 2� 0:375

�tv ¼ 0:42 s, while the measured value is tp¼ 0.44 s. This is

a reasonable agreement considering the approximations

made in the modeling, which indicates that the RHS of

Eqs. (1) and (2) describe well the dependence on x of the

force by the flow.

Let us estimate the total radial force F exerted on a

spherical surface around the fireball, by the flow out of the

fireball. We divide Ffb, the force on the pendulum by the fire-

ball at x¼ xp, by the ratio of the area of a sphere of radius

aþ xp to the area of the pendulum Apend¼ 4 cm2. We obtain

that

F ¼ Fp 1� xg

xp

Rþ xg

Rþ xp

� �� �
4p aþ xpð Þ2

Apend
¼ 9: 5� 10�4 N:

(3)

Since we assume that there is no external force on the flow

outside the fireball, this is also the expected force on a spher-

ical surface outside the fireball of any radius. In particular,

FIG. 3. The plasma and the pendulum interaction (a)-(h) Frames 12 to

19 of the movie that show the fireball and the pendulum at different

times within a single oscillation period (Multimedia view). [URL:

http://dx.doi.org/10.1063/1.4863958.1]

023505-3 G. Makrinich and A. Fruchtman Phys. Plasmas 21, 023505 (2014)

http://dx.doi.org/10.1063/1.4863958.1


this should also be the force on a spherical surface at the

location of the Langmuir probe, at xprobe¼ 5 mm.

We note here that the anode seems to be heated signifi-

cantly by the electron current. The hole in the ceramic insu-

lator, through which the gas flows from the gas distributor

towards the pendulum, is close to the heated anode. The gas

could be heated by the hot anode in addition to heating inside

the fireball. To estimate the effect of this additional heating,

we measured the force, with no discharge, by the gas flow

when it passes along a heated coil of a size and temperature

(900 K) similar to those of the anode during the discharge.

The force was not enhanced significantly relative to the force

by the gas flow when the anode was cold. Therefore, the ori-

gin of the force is indeed the momentum gained inside the

fireball.

The total ion particle flux CiT is determined by the total

ion current evaluated above Ii. It is

CiT ¼
Ii

e
¼ 1: 9� 1017 s�1: (4)

We now calculate the force per ion, which turns out to be

F

CiT
¼ 5: 0� 10�21 m

s
kg: (5)

We now estimate the momentum of an argon ion that

acquired the maximal velocity by acceleration across the

voltage drop between the pendulum and the anode. The

applied voltage between the cathode and the anode is

Vapp¼ 50 V, while the potential relative to the cathode,

measured by our Langmuir probe in the vicinity of the fire-

ball, is 20 V. Therefore, the voltage across the fireball, V, is

about 30 V. The ion momentum with the maximal velocity is

therefore

mi

ffiffiffiffiffiffiffiffi
2eV

mi

r
¼ 8: 0� 10�22 m

s
kg; (6)

where e is the elementary charge. The momentum carried by

the flow per ion is

F

CiT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eVmi

p ¼ 6:2 (7)

times larger than the force exerted by ions who have

acquired a kinetic energy from the full potential drop. We

conclude that the exerted force was not only due to the mo-

mentum of the ions gained while they cross the voltage drop

across the fireball. In Sec. IV, we explore sources for

enhancement of the exerted force. One such source for force

enhancement is ion-neutral collisions during the

acceleration.20–22 We present two variations of such an

enhancement. In Sec. V we discuss the other potential source

of the enhanced force which is the increased gas pressure by

heating by the electrons, as recently suggested.18

IV. ION-NEUTRAL COLLISIONS

A. The plasma dynamics in the ball

The plasma dynamics in the ball is governed by the con-

tinuity equation

1

r2

@

@r
r2Ci

	 

¼ S; (8)

and by the momentum equations for the ions and electrons

0 ¼ neE� mi�Ci 0 ¼ �enE� @ nTð Þ
@r

: (9)

Here, spherical symmetry around the center of the fireball is

assumed and r is the distance from that center, Ci is the ion

particle flux density, and S is the particle source due to ioniza-

tion. Also, n is the plasma density, T is the electron tempera-

ture, � is the ion-neutral collision frequency, and E is the

radial electric field. We add the equations of motion to obtain

� @ nTð Þ
@r
¼ mi�Ci: (10)

In all cases here, we assume isothermal electrons T¼ const.
Therefore, from the second of Eq. (9), the potential drop

across the quasi-neutral plasma is

FIG. 4. The pendulum deviation x ver-

sus time, as was shown in the movie.

The equilibrium position when no

force is exerted is denoted as x¼ 0.
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DVpl ¼
T

e
ln

n0

ns

� �
; (11)

where n0 and ns are the plasma density at the center of the

ball and at the sheath boundary, respectively.

B. The linear diffusion equation

We start with the case that the ionization is of the form

S ¼ bNn; (12)

where b is the electron-impact ionization rate constant and N
is the (uniform) neutral-gas density.

For simplicity, we first assume that

� ¼ rNvT (13)

and is constant. Here, r is the ion-neutral collision cross sec-

tion and vT is the neutral-gas thermal velocity. Note that

these equations hold even if the electron flow is different

from the ion flow so that the current is not zero. We combine

Eqs. (8), (10), and (13) to the linear diffusion equation in a

spherical symmetry

1

r2

@

@r
r2 @n

@r

� �
þ k2n ¼ 0; k2 � rvTbN2

c2
: (14)

Here, c �
ffiffiffiffiffiffiffiffiffiffi
T=mi

p
is the ion acoustic velocity. The plasma

density, as a solution of Eq. (14), is

n ¼ n0j0 krð Þ ¼ n0

sin krð Þ
kr

; (15)

while, from Eqs. (10) and (13), the radial ion particle flux

density is

Ci ¼
c2n0k

rvTN

sin krð Þ
k2r2

� cos krð Þ
kr

� �
; (16)

where j0 is the spherical Bessel function of the first kind. The

plasma density is small at the edge, at r¼ a, so that we ap-

proximate at this diffusion limit

ka ¼ p) rvTbN2

c2
a2 ¼ p2: (17)

This relation determines the value of the electron tempera-

ture, if all other quantities are specified, as is often the case

in weakly ionized plasmas.24,26–28

Using the relation (17), we express the plasma density

and ion radial flux density as

n ¼ n0

sin pr=að Þ
pr=að Þ (18)

and

Ci ¼
n0Tp

mivTrNa

sin pr=að Þ
pr=að Þ2

� cos pr=að Þ
pr=að Þ

" #
: (19)

Note that Ci has a maximum somewhere between the ball

center and edge.

The ion flux through a radial envelope, Cir � 4pr2Ci, is

Cir ¼
4n0Ta

mivTrN
sin

pr

a

� �
� pr

a
cos

pr

a

� �� �
: (20)

The maximal ion flux is at the edge of the ball

CiT ¼ Cir r ¼ að Þ ¼ 4p
n0Ta

mivTrN
: (21)

We note on passing that we may write, as in standard particle

balance analyses,24,28 CiT ¼ nsc4pa2, where ns, the plasma

density at the sheath edge, is here ns ¼ n0c= vTrNað Þ.
Therefore,

DVpl ¼
T

e
ln

vTrNa

c

� �
: (22)

Here, rNa is the number of collision mean-free-paths within

the fireball radius.

The force that acts on the ions outward is

Fr ¼ �
ðr

0

T
@n

@r
4pr2dr

¼ 8a2

p
1� cos

pr

a

� �� �
� 4pra sin

pr

a

� �( )
n0T: (23)

The total radial force on the fireball is

Fr ¼
4

p2
4pa2n0T; (24)

which is the plasma pressure multiplied by the area and by

the numerical factor 4/p2.

The force per ion is therefore

Fr

CiT
¼ 4

p2
mivTrNa (25)

and is proportional to the number of mean free paths within

the ball radius.

In Subsection IV C, we redo the calculation assuming a

uniform ionization.

C. Ion-neutral collisions in a high density
gas—uniform ionization

We assume that the ionization is due to a high energy

electron beam of a uniform density (that is smaller than the

plasma density n). Thus, the rate of ionization does not

depend on the plasma electron density but rather it is

S ¼ S0 ¼ CerionN; (26)

where Ce is the electron beam flux density, and rion is the

electron-energy-dependent ionization cross section. We

assume that the source S0 is uniform inside the fireball, since

rion is uniform there, as all the electrons in the beam have a

similar kinetic energy that they acquired while they were
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accelerated up the double layer that surrounds the fireball.

From Eq. (8), it follows that

Ci ¼
S0r

3
; (27)

so that the total ion flux out of the ball becomes

CiT ¼ Cir r ¼ að Þ ¼ 4pS0a3

3
: (28)

Assuming a high neutral gas density, so that the ion-neutral

collision frequency is given by Eq. (13), and using Eqs. (10)

and (27), we obtain that the plasma density is

n ¼ n0 1� r2

a2

� �
; n0 ¼

�S0a2

6c2
; (29)

so that

CiT ¼ 8p
n0Ta

mivTrN
: (30)

We comment, as we did above, that we may write

CiT ¼ nsc4pa2, where ns, the plasma density at the sheath

edge, is in this case ns ¼ 2n0c= vTrNað Þ, twice the value of

the previous case. The expression for the potential drop

across the plasma is

DVpl ¼
T

e
ln

vTrNa

2c

� �
; (31)

similar to the expression in the previous case.

We turn to the estimate of the force

Fr ¼ �
ða

0

T
@n

@r
4pr2dr ¼ 0:5� 4pa2n0T; (32)

which is the plasma pressure multiplied by the area and by

the numerical factor 0.5 instead of 4/p2 in the case above

[Eq. (24)]. The force over the ion flux turns out to be

Fr

CiT
¼ mivT

4
rNa; (33)

which is also similar to that in the previous case [Eq. (25)],

aside from a numerical factor. The force over the ion flux (or

the impulse per ion) is therefore very similar when two dif-

ferent forms of S are assumed, as long as the ion-neutral col-

lision frequency was of the same form [Eq. (13)].

We turn now to a third case, in which the neutral gas is

of a lower density, so that the ion-neutral collision frequency

depends on the ion velocity.

D. Ion-neutral collisions in a low density gas - uniform
ionization

As in the previous case, we assume a uniform ionization

[Eq. (26)] so that the total flux is given by Eq. (27).

However, we assume that the neutral-gas density is low

enough so that the relative velocity between the colliding ion

and neutral is the ion drift velocity v. The ion-neutral colli-

sion frequency in this case is23,24,28

� ¼ rNv: (34)

The momentum equation, Eq. (10), becomes

c2

rN

@n

@r
¼ �C2

i

n
; (35)

and with the expression in Eq. (27), we write that

n ¼ n0 1� r3

a3

� �1=2

; n0 ¼
ffiffiffi
2

3

r
S0a

3c

ffiffiffiffiffiffiffiffiffi
rNa
p

: (36)

The total ion flux is therefore

CiT ¼
4pS0a3

3
¼ 4pa2 n0cffiffiffiffiffiffiffiffiffi

rNa
p

ffiffiffi
3

2

r
; (37)

and the density at the sheath boundary in this case is

ns ¼ n0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rNa=3

p
. The expression for the potential drop

across the plasma becomes

DVpl ¼
T

e
ln

ffiffiffiffiffiffiffiffiffiffiffi
2rNa

3

r
: (38)

We turn to calculating the force

Fr ¼ �
ða

0

T
@n

@r
4pr2dr ¼ 0:740� 4pa2n0T; (39)

where we used ð3=2Þ
Ð 1

0
s4 1� s3ð Þ�1=2

ds ¼ 0:740. We find

that the impulse per ion is

Fr

CiT
¼ 0:604mic

ffiffiffiffiffiffiffiffiffi
rNa
p

: (40)

The impulse per ion is enhanced by the square root of

the number of mean free paths.

E. Estimating the force due to ion-neutral collisions

We employ the theoretical modeling of Subsections

IV A–IV D to examine the possibility that the force by the

fireball is enhanced in our experiment by ion-neutral colli-

sions. We compare the calculated ratio Fr/CiT with the meas-

ured value. Comparing the values of the ratio is useful, since

the calculated ratio is independent of the plasma density,

which we have not measured. The neutral-gas pressure was

5 mTorr near the wall of the vacuum chamber. From our pre-

vious studies of the force by the RPS flow when the plasma

was magnetized,22 we estimate the pressure in the region

between the plates to be up to 25 mTorr, which, for the gas

temperature Tg¼ 300 K, corresponds to N ¼ 8:5� 1020 m�3.

Since the fireball is close to the RPS but not between the

plates, we estimate that the gas pressure is between 5 and

25 mTorr (so that N is between 1.7 and 8:5� 1020m�3, for

Tg¼ 300 K). The cross section for ion-neutral collisions is

r ¼ 8� 10�19 m2, and therefore the number of collision
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mean-free-paths across the fireball radius, rNa, is larger than

unity for N � 7: 3� 1019 m�3.

We first assume that the model in Secs. IV B and IV C

hold and we calculate the neutral-gas density necessary for

the impulse per ion to be the measured value F=CiT ¼
5: 0� 10�21 m s�1kg [Eq. (5)]. The thermal velocity of the

argon atoms is vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Tg=pmi

p
¼ 400 ms�1 and therefore

the necessary neutral-gas density according to Eq. (25) is

N ¼ p2Fr=CiT

4mivTra
¼ 3:4� 1022 m�3; (41)

about 40 times larger than our estimated upper bound on the

neutral density. The necessary neutral-gas density according

to Eq. (33) is even higher.

We now use the expression in Eq. (40), assuming that

the gas density is low enough so that the model in Sec. IV D

holds. We estimate the electron temperature inside the fire-

ball. As written above, the voltage across the fireball is about

30 V. We assume that the electron temperature is T¼ 10 eV.

The ion acoustic velocity of the argon atoms is then

c ¼ 4880 m s�1. The necessary neutral-gas density for the

impulse per ion Fr/CiT to be the measured value [Eq. (5)]

according to Eq. (40) is then

N ¼ 1

ra

Fr=CiT

0:604mic

� �2

¼ 4:8� 1022 m�3; (42)

which is about 55 times larger than our estimated upper

bound on the neutral density.

We conclude that ion-neutral collisions and the resulting

enhanced plasma pressure contribute only a small part to the

force exerted by the flow. We therefore examine the possibil-

ity that, as suggested in Ref. 18, it is gas heating inside the

fireball by the energetic electrons that increases the gas pres-

sure, and, consequently, the exerted force. For the calculation

of the gas heating, we do need to know the plasma density.

We use our measurements to estimate the plasma den-

sity in the fireball. From Eq. (37), we can write the maximal

plasma density as

n0 ¼
ffiffiffi
2

3

r
CiT

ffiffiffiffiffiffiffiffiffi
rNa
p

4pa2c
: (43)

For N between 1.7 and 8:5� 1020 m�3, n0 varies from 1:3�
1016 m�3 to 3:0� 1016 m�3. In the following analysis, we

use this estimate of the plasma density.

In Sec. V, we calculate the possible contribution of gas

heating to the exerted force.

V. EXERTED FORCE DUE TO GAS HEATING

We evaluate here the enhancement of the exerted force

due to gas heating. Stenzel et al.18 evaluated that force for a

pulsed fireball. We have found that a force is exerted even

for a steady-state fireball. We assume that the force is due to

a neutral-gas flow outward of the heated fireball. If a steady-

state force is exerted by a particle flow constantly exiting the

fireball, there must also be a particle flow of the same flux

into the fireball. We estimate here what the power deposited

in the fireball and the particle flux into and out of the fireball

should be, in order to exert the force that we measured.

The total force exerted by the flow exiting the plasma is

FT ¼ CNTmiu1; (44)

where CNT is the total neutral-gas flux outward of the fireball,

and u1 is the flow velocity upon exiting the fireball. The

power that was deposited in the flow inside the fireball and

that is carried by the flow outward is

PT ¼ CNTmi
u2

1

2
: (45)

We assume that the velocity of the neutral-gas atoms enter-

ing the fireball is much smaller than u1. The part of the

power carried by the flow outward that equals (5/2)CNTTg1

equals the power carried by the flow entering the fireball and

does not contribute to the net power flow (Tg1 is the gas tem-

perature at the fireball boundary). From the expressions for

the force and for the power, we obtain the relation

FT ¼ 2miCNTPTð Þ1=2: (46)

We can express the flux as CNT¼N1u1A, where A is the

area of the ball from which the gas flows outward and N1 is

the density of the neutral-gas density upon exiting the fireball.

We assume that the source of the power is the gas heating by

the electron current. The collision rate, the number of

electron-neutral collisions in the fireball per unit time per unit

volume, is hreNvTeiNn, where hreNvTei ffi 5� 10�13 m3 s�1 is

the argon electron-neutral collision rate constant (Fig. 3.16 in

Ref. 24 for T� 10 eV). The energy deposited in the gas inside

the fireball per unit time per unit volume, Q, is the product of

the collision rate by Ee, the average electron energy, and by

2 me/mi, the fraction of electron energy that is transferred to an

argon atom in one collision

Q ¼ Ee
2me

mi
hreNvTeiNn: (47)

We assume that the mean free path for electron-neutral colli-

sion is smaller than the ball radius, so that the electrons do

not cross the plasma as a beam. Therefore, for simplicity, we

assume here that there is no distinction between beam and

plasma electrons, all having an average energy Ee¼ (3/2)

T¼ 15 eV. We further approximate the value of N in

Eq. (47) as N1, its value at the fireball boundary and the

value of n as n0 calculated according to Eq. (43). Therefore,

the heating Q is approximately uniform inside the fireball.

Because gas has to flow into the fireball across parts of

its spherical boundary and outward of the fireball at other

parts of the spherical boundary, the flow cannot be spherical

symmetric as we assumed above for the source of exerted

force. We therefore do not assume here that the gas flow is

spherically symmetric. Rather, we simplify the calculation

by approximating the fireball as a cylinder through which the

gas is accelerated parallel to its axis. We do not know how

good the approximation as a cylinder is, but it is enough for

our purpose to examine if a force on the order of the
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measured force can be modeled. The assumed cylinder is of

length a and cross section A¼pa2, of a volume 3/4 of the

fireball volume. The power is therefore PT ¼ Qpa3 and is a

function of N1. We thus obtain an equation for the

neutral-gas density, N1, which is

N1P2
T ¼

F3
T

4miA
: (48)

We also assume that the effective area for calculating the

total force is A and not the fireball area, 4pa2. These assump-

tions are different from our previous assumption that the

plasma flow outward of the spherical fireball is the source of

the force. With these new assumptions, the force is

FT ¼ 9:5� 10�4 N=4, where 9:5� 10�4 N was the value we

assumed for a force at the fireball surface area [Eq. (3)].

We solve Eq. (48) for N1, calculate the power PT(N1), use

Eq. (46) to find CNT, and consequently u1. We find that

N1 ¼ 6:5� 1020 m�3; PT ¼ 0:0092 W;

CNT ¼ 4:6� 1019 s�1; u1 ¼ 78 m s�1; (49)

and also that the rate of heating for a volume unit is

Q¼ 597 Wm–3, and that the maximal plasma density is

n0¼ 2. 8� 1016 m�3.

The calculated values of neutral-gas density and veloc-

ity and of the deposited power are reasonable. However, the

calculated particle flux is considerably larger than the gas

flow rate into the chamber, which is 1. 56� 1019 s�1 (for 35

SCCM). The exertion of a steady force by gas acceleration

described here must be accompanied by inducing a steady

gas flow of a rate CNT [as given in Eq. (49)] into the

fireball.

We now describe a particular steady flow that is accom-

panied by acceleration of a gas heated by the plasma, with

the parameters deduced above [Eq. (49)]. For simplicity, a

1D model is used, in which the flow variables only depend

on z (the coordinate along the axis of the fireball cylinder).

Note that z is not the coordinate along the axis of the RPS.

The flow is described by the equations of continuity, momen-

tum, and energy

@

@z
Nuð Þ ¼ SN; Nmiu

2 þ NTg ¼ N0Tg0;

@

@z
Nu

miu
2

2
þ 5

2
Tg

� �� �
¼ Q

0 � Qþ SN
5

2
Tg1: (50)

Here, u is the gas fluid velocity, Tg0 is the maximal gas tem-

perature where u¼ 0 (Tg1 the gas temperature at the bound-

ary, as above), and SN and Q are the particle and heat sources

densities. Gas of temperature Tg1 flows into the fireball

through its lateral boundaries and is accelerated along z.

In our 1D picture, this two-dimensional particle flow is mod-

eled by the volume particle source of rate SN. We assume

that SN and Q are uniform and obtain the following relations:

5

2

Tg0

mi
¼ Q

0

miSN
¼ Q

miSN
þ 5

2

Tg1

mi
¼ u2

2
þ 5

2

Tg

mi
: (51)

From these relations and the momentum balance, we obtain

an equation of state that relates the gas pressure Pg to the gas

density

Pg � NTg ¼
5

4
NTg0 �

N0Tg0

4
: (52)

The acoustic velocity um turns out to be constant

u2
m ¼

1

mi

@Pg

@N
¼ 5

4

Tg0

mi
¼ Q

0

2miSN
: (53)

The gas-flow variables are expressed as functions of u and um

Tg ¼ Tg0�
miu

2

5
;

SNz

N0um
¼ u=um

1þ u=umð Þ2
;

N

N0

¼ 1

1þ u2=u2
m

	 
 :
(54)

Substituting the values in Eq. (49) into Eq. (54) and assum-

ing that Tg1¼ 300 K, we find that SN ¼ 3:0� 1024 s�1 m�3

and that

Tg0 ¼ 305:8 K; um ¼ 280
m

s
; N0 ¼ 7:0� 1020 m�3:

(55)

The neutral-gas density and temperature are increased

locally only slightly in the fireball, and this pressure increase

is sufficient to provide the measured force.

Let us estimate the heat conduction. The heat conduc-

tion, �K~�T, through the boundaries of our model cylinder

of an area 4pa2, is estimated as

Pcond ¼ K Tg0 � Tg1ð Þ4pa; K ¼ Tg

mirNvT
; (56)

where K is the coefficient of heat conductivity29,30 and rN is

the neutral-neutral collision cross-section. According to

Table 9 in Ref. 31, and the derivation from thermal conduc-

tivity measurements in Fig. 9 of Ref. 32, rN¼ 4� 10�19 m2

in argon. Using the relations obtained above when heat con-

duction is neglected, Tg0 � Tg1 ¼ miu
2
1=5 ¼ 2PT=ð5CNTÞ, we

write the ratio of the heat flux through the boundaries to the

energy deposited in the kinetic energy of the exiting gas, as

Pcond

PT
¼ p2vTa

5CNTrN
ffi 0:5: (57)

Therefore, heat conduction is not negligible. We conclude

that in fact a somewhat larger neutral-gas density and parti-

cle flux are needed to explain the measured force due to

neutral-gas heating.

VI. SUMMARY

We investigated experimentally and theoretically the

force that is exerted by a fireball generated near the anode in

our radial plasma source. For the force measurements, we

used a pendulum and measured the modification of its equi-

librium position and of its oscillation period under the

exerted force. The measurements indicated that the impulse

per ion is much larger than expected by ion acceleration

across the double layer around the fireball. We examined

theoretically two regimes in which the force is enhanced by
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ion-neutral collisions in the fireball (which increase the

plasma pressure). We found that in order for the enhanced

force to be caused by ion-neutral collisions, the neutral-gas

density has to be much larger than the estimated density. Gas

pressure increase by electron-neutral collisions inside the fire-

ball was shown to be a possible source for the enhanced force,

if a large neutral-gas flux into the fireball exists. Further

experiments and modelling are required in order to clearly

identify the source of the force exerted by the fireball.
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